Dieser Artikel behandelt die Theorie der Messung in der Psychologie und in den Wirtschafts und Sozialwissenschaften Für
Messtheorie

Die Messtheorie beschäftigt sich unabhängig von konkreten wissenschaftlichen Problemstellungen mit Grundlagen des Messens, insbesondere mit den Bedingungen, die erfüllt sein müssen, um eine Eigenschaft messen zu können. Anwendungsgebiete sind die Psychologie, die Wirtschafts- und Sozialwissenschaften und die Statistik.
Zu diesem Zweck legt sie eine grundlegende Terminologie fest und nutzt das Instrumentarium der Mengenlehre und der mathematischen Abbildungen zur Beschreibung des Messens.
Die Messtheorie zeigt, wie sich empirische Relationensysteme (d. h. beobachtbare Beziehungen von Eigenschaften unterschiedlicher Objekte in der Art „A ist kleiner als B.“) in formale Relationensysteme unter Verwendung numerischer Werte umsetzen lassen. Damit dieses möglich ist, muss insbesondere eine strukturerhaltende Abbildung vom empirischen zum formalen Relationensystem existieren. Die Messtheorie zeigt auf, wie solche Abbildungen gefunden und axiomatisch fundiert werden können, um somit die Messbarkeit von Eigenschaften nachzuweisen.
In der weiteren Ausarbeitung liegt die Messtheorie der Bildung unterschiedlicher Skalentypen zu Grunde. Des Weiteren werden unterschiedliche Messstrukturen untersucht, wie z. B. die extensive Messung, die Bisymmetriestruktur oder die additiv verbundene Messung.
Eine besondere Bedeutung spielt die Messtheorie in Bereichen, in welchen die Messbarkeit der interessierenden Eigenschaften nicht unmittelbar auf der Hand liegt. Hierzu zählen z. B. die Messbarkeit psychologischer Vorgänge oder in den Wirtschaftswissenschaften die Messbarkeit von Präferenzen und Nutzen. In der Statistik ist das Problem der Messung ein formaler Teilaspekt des allgemeineren Problems der statistischen Adäquation.
Literatur
- David H. Krantz, R. Duncan Luce, Patrick Suppes & Amos Tversky: Foundations of measurement. Vol. I. Additive and polynomial representations. Academic Press, New York 1971.
- Patrick Suppes, David H. Krantz, R. Duncan Luce & Amos Tversky: Foundations of measurement. Vol. II. Geometrical, threshold and probabilistic representations. Academic Press, New York 1989.
- R. Duncan Luce, David H. Krantz, Patrick Suppes & Amos Tversky: Foundations of measurement. Vol. III. Representation, axiomatization, and invariance. Academic Press, New York 1990.
- Johann Pfanzagl: Die axiomatischen Grundlagen einer allgemeinen Theorie des Messens (= Schriftenreihe des Statistischen Instituts der Universität Wien, Neue Folge. Band 1). Physica-Verlag, Würzburg 1959.
- Johann Pfanzagl: Theory of Measurement. 2. überarbeitete Auflage. Springer, Berlin/Heidelberg 1971, ISBN 978-3-7908-0016-6, doi:10.1007/978-3-662-41488-0 (In Zusammenarbeit mit V. Baumann und H. Huber).
- Markus Wirtz, Christof Nachtigall: Deskriptive Statistik. Statistische Methoden für Psychologen. Band 1 & 2. Juventa Verlag, 4. Auflage, 2006, ISBN 978-3779910534.
Einzelnachweise
- Hans Schneeweiß: Nutzenaxiomatik und Theorie des Messens. In: Statistische Hefte. Band 4, 1963, S. 178–220, doi:10.1007/BF02923048.
- Johann Pfanzagl: A General Theory of Measurement Applications to Utility. In: Naval Research Logistics Quarterly. Band 6, Nr. 4, 1959, S. 283–294, doi:10.1002/nav.3800060404.
Autor: www.NiNa.Az
Veröffentlichungsdatum:
wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer
Dieser Artikel behandelt die Theorie der Messung in der Psychologie und in den Wirtschafts und Sozialwissenschaften Fur die physikalische Theorie des Messens und der Masssysteme siehe Messung Metrologie und quantenmechanische Messung Fur die mathematische Theorie der Inhaltsbestimmung siehe Masstheorie Die Messtheorie beschaftigt sich unabhangig von konkreten wissenschaftlichen Problemstellungen mit Grundlagen des Messens insbesondere mit den Bedingungen die erfullt sein mussen um eine Eigenschaft messen zu konnen Anwendungsgebiete sind die Psychologie die Wirtschafts und Sozialwissenschaften und die Statistik Zu diesem Zweck legt sie eine grundlegende Terminologie fest und nutzt das Instrumentarium der Mengenlehre und der mathematischen Abbildungen zur Beschreibung des Messens Die Messtheorie zeigt wie sich empirische Relationensysteme d h beobachtbare Beziehungen von Eigenschaften unterschiedlicher Objekte in der Art A ist kleiner als B in formale Relationensysteme unter Verwendung numerischer Werte umsetzen lassen Damit dieses moglich ist muss insbesondere eine strukturerhaltende Abbildung vom empirischen zum formalen Relationensystem existieren Die Messtheorie zeigt auf wie solche Abbildungen gefunden und axiomatisch fundiert werden konnen um somit die Messbarkeit von Eigenschaften nachzuweisen In der weiteren Ausarbeitung liegt die Messtheorie der Bildung unterschiedlicher Skalentypen zu Grunde Des Weiteren werden unterschiedliche Messstrukturen untersucht wie z B die extensive Messung die Bisymmetriestruktur oder die additiv verbundene Messung Eine besondere Bedeutung spielt die Messtheorie in Bereichen in welchen die Messbarkeit der interessierenden Eigenschaften nicht unmittelbar auf der Hand liegt Hierzu zahlen z B die Messbarkeit psychologischer Vorgange oder in den Wirtschaftswissenschaften die Messbarkeit von Praferenzen und Nutzen In der Statistik ist das Problem der Messung ein formaler Teilaspekt des allgemeineren Problems der statistischen Adaquation LiteraturDavid H Krantz R Duncan Luce Patrick Suppes amp Amos Tversky Foundations of measurement Vol I Additive and polynomial representations Academic Press New York 1971 Patrick Suppes David H Krantz R Duncan Luce amp Amos Tversky Foundations of measurement Vol II Geometrical threshold and probabilistic representations Academic Press New York 1989 R Duncan Luce David H Krantz Patrick Suppes amp Amos Tversky Foundations of measurement Vol III Representation axiomatization and invariance Academic Press New York 1990 Johann Pfanzagl Die axiomatischen Grundlagen einer allgemeinen Theorie des Messens Schriftenreihe des Statistischen Instituts der Universitat Wien Neue Folge Band 1 Physica Verlag Wurzburg 1959 Johann Pfanzagl Theory of Measurement 2 uberarbeitete Auflage Springer Berlin Heidelberg 1971 ISBN 978 3 7908 0016 6 doi 10 1007 978 3 662 41488 0 In Zusammenarbeit mit V Baumann und H Huber Markus Wirtz Christof Nachtigall Deskriptive Statistik Statistische Methoden fur Psychologen Band 1 amp 2 Juventa Verlag 4 Auflage 2006 ISBN 978 3779910534 EinzelnachweiseHans Schneeweiss Nutzenaxiomatik und Theorie des Messens In Statistische Hefte Band 4 1963 S 178 220 doi 10 1007 BF02923048 Johann Pfanzagl A General Theory of Measurement Applications to Utility In Naval Research Logistics Quarterly Band 6 Nr 4 1959 S 283 294 doi 10 1002 nav 3800060404